Create a RAG app object on Embedchain. This is the main entrypoint for a developer to interact with Embedchain APIs. An app configures the llm, vector database, embedding model, and retrieval strategy of your choice.
Attributes
Configured LLM for the RAG app
Configured vector database for the RAG app
Configured embedding model for the RAG app
Client object (used to deploy an app to Embedchain platform)
Usage
You can create an app instance using the following methods:
Default setting
from embedchain import App
app = App()
Python Dict
from embedchain import App
config_dict = {
'llm': {
'provider': 'gpt4all',
'config': {
'model': 'orca-mini-3b-gguf2-q4_0.gguf',
'temperature': 0.5,
'max_tokens': 1000,
'top_p': 1,
'stream': False
}
},
'embedder': {
'provider': 'gpt4all'
}
}
# load llm configuration from config dict
app = App.from_config(config=config_dict)
YAML Config
from embedchain import App
# load llm configuration from config.yaml file
app = App.from_config(config_path="config.yaml")
JSON Config
from embedchain import App
# load llm configuration from config.json file
app = App.from_config(config_path="config.json")